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Abstract

A Love–Kirchhoff plate model for in plane and out of plane actions of linear elastic periodic brickwork has been

already proposed by Cecchi and Sab [Eur. J. Mech. A.-Solids, 21 (2002a) 249]. In this work, the case of infinitely rigid

blocks connected by elastic interfaces (the mortar thin joints) is considered. A numerical discrete 3D model is proposed

and compared to the homogenised Love–Kirchhoff plate model. In order to enhance this plate model, shear effects are

taken into account leading to the identification of a new Reissner–Mindlin homogenised plate model. The bending

constants of both Love–Kirchhoff and Reissner–Mindlin models are the same, while the shear constants of the Re-

issner–Mindlin model are identified using a simple procedure of compatible identification between the 3D discrete

model and the 2D one. A numerical evaluation of the scatter between the 3D discrete model and both Love–Kirchhoff

and Reissner–Mindlin models is performed on a test case for various values of the ratio between the thickness of the

wall and its overall size, and for various values of the parameter that characterises the heterogeneity of the wall. It is

shown that both plate models coincide asymptotically with the discrete 3D model, the convergence being better for the

Reissner–Mindlin model.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Heterogeneous; Periodic structure; Elasticity; Masonry; Kirchhoff plates; Mindlin plates; Discrete models
1. Introduction

Masonry is a heterogeneous material obtained by the regular repetition of blocks between which mortar

is laid. By periodic brickwork the reference was set to a masonry made either by dry stone blocks or

by brick blocks connected through thin mortar joints and arranged according to a periodic texture.

An extensive literature has been developed to obtain a description of discrete systems by means of
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microstructural approach (Alpa and Monetto, 1994; Anthoine and Pegon, 1994; Anthoine, 1995; Lee et al.,

1996, 1998; Luciano and Sacco, 1997; Masiani et al., 1995; Lopez et al., 1999).

By reference to the continuum models, 2D rigorous homogenisation models in several perturbative

parameters have been already developed––by Cecchi and Rizzi (2001) and Cecchi and Sab (2002a)––in
order to study the behaviour of masonry walls subject to actions parallel to the middle plane. An

asymptotic study in several parameters was also carried out by de Felice (1995) and an analytical solution

was obtained for running bond. This model considered the case in which the blocks are rigid bodies and the

thickness of mortar is zero. The mortar was modelled as an interface with a constitutive function that was

directly assigned as a linear elastic function of the displacement jump across the joint. The solution of the

auxiliary field problem on the representative unit cell was obtained analytically because of the rigid motions

of the blocks. Then, the proposed expression for the homogenised stiffness tensor was only dependent on

the geometry of the blocks and on the constitutive function of the interface.
Cecchi and Sab (2002b) developed also a plate model to study masonry walls subject to both in plane

and out of plane actions through a rigorous homogenisation procedure. In this model, masonry is assumed

periodic in the middle plane, i.e. in the orthogonal directions to its thickness. Another parameter, f � e, is
added to the e scale parameter typical of homogenisation methods. This new parameter is the ratio between

the thickness t of the wall and its overall size L.
e ¼ a
L
� 1 f ¼ t

L
� 1
where a is the in plane dimension of the representative unit cell (Sanchez-Palencia, 1980; Caillerie, 1984;

Sanchez-Palencia and Zaoui, 1987; Sanchez-Hubert and Sanchez-Palencia, 1992).
If t is comparable to a, then the asymptotic model that has been developed allows the identification of

the 3D heterogeneous solid with a 2D Love–Kirchhoff homogeneous plate in which the anisotropy is

connected with the arrangement of blocks. Moreover, an analytical expression of the homogenised plate

elastic constants was obtained when the blocks are rigid bodies. This hypothesis is representative of his-

torical masonry; in fact, blocks are generally much stiffer than mortar and mortar joints show a very small

thickness if compared with the sizes of the blocks.

The first purpose of this work is to evaluate the reliability of the previously mentioned Love–Kirchhoff

homogenised model when compared to a discrete 3D model. Actually, similar comparison has been already
developed by Salerno and de Felice (1999), Salerno and de Felice (2000) in the context of 2D homogeni-

sation.

The second purpose is to enhance the Love–Kirchhoff model by taking into account the shear effects.

Indeed, a Reissner–Mindlin model is identified––based on a compatible identification procedure––and a

comparison with the 3D discrete model is carried out.

In Section 2 the discrete 3D model is presented; the blocks that form the masonry wall are modelled as

rigid bodies connected by elastic interfaces (mortar thin joints). In other words, masonry is seen as a

‘‘molecular skeleton’’ in which the interactions between the molecules (rigid blocks) are represented by
forces and moments which depend on their relative displacements and rotations (Lofti and Benson Shing,

1994; Lourenc�o and Rots, 1993; Markov, 1999).

In Section 3, the Reissner–Mindlin plate model is proposed and an identification of the shear elastic

constants is performed.

In Section 4, the numerical results are shown. An evaluation of the scatter between the discrete

model and the homogenised models is performed for various values of parameters f and e. It is shown

that both Love–Kirchhoff model and Reissner–Mindlin model coincide asymptotically with the discrete

3D model as f � e tend to zero. Besides, the convergence is shown to be better for the Reissner–Mindlin
model.
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2. The 3D discrete model

Let yi;j be the position of the centre of the generic Bi;j block (Fig. 1) in the 3D Euclidean space:
yi;j ¼ i
b
2
e1 þ jae2
where b is the width of the block and a is the height of the block. As shown by Fig. 1, j can actually take

arbitrary values while i is such as iþ j is even. The displacement of each block is a rigid body motion:
u ¼ ui;j þXi;j ^ ðy� yi;jÞ; 8y 2 Bi;j ð1Þ

where ui;j is the translation vector and Xi;j is the rotation vector of Bi;j.

Due to the regularity of the masonry structure, the Bi;j block interacts with the Biþk1;jþk2 block by means

of Rk1;k2 elastic joints as follows:

• if k1; k2 ¼ �1, then Rk1;k2 is an horizontal interface;
• if k1 ¼ �2 and k2 ¼ 0, then Rk1;k2 is a vertical interface. The interfaces of the B0;0 block are:
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� b

2
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If the mortar joint is modelled as an elastic interface––such problem has been studied by Klarbring

(1991) by means of perturbative techniques––, the deformation between two blocks may be written as a

function of the displacement jump. The constitutive prescription for the contact is a linear relation between

the tractions on the block surfaces and the jump of the displacement field.
rn ¼ K½½u�� on Rk1;k2 ð2Þ
Bi,
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Fig. 1. Masonry structure.
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Here r is the stress tensor, n is the normal to Rk1;k2 , ½½u�� is the jump of the displacement field at Rk1;k2 and K is

given by
Kij ¼
1

e
aMikljnknl ð3Þ
where aM is the elastic stiffness tensor of the mortar and e is the thickness of the real joint. It will be assumed

in the sequel that the mortar is isotropic, then Eq. (3) becomes:
K ¼ 1

e
lMI
�

þ ðlM þ kMÞðn� nÞ
�

ð4Þ
where lM and kM are the Lam�e constants of the mortar (Klarbring, 1991; Avila-Pozos et al., 1999; Cecchi

and Sab, 2002a,b). Note that K tensor has a diagonal form in this case.

The interactions between the blocks through the interfaces are represented by elastic forces and moments

that must be found. The following notations are introduced:
Dk1;k2
1 ¼ uiþk1;jþk2

1 � ui;j1 þ k2a
Xiþk1;jþk2

3 þ Xi;j
3

2
ð5Þ

Dk1;k2
2 ¼ uiþk1;jþk2

2 � ui;j2 � k1
b
2

Xiþk1;jþk2
3 þ Xi;j

3

2
ð6Þ

Dk1;k2
3 ¼ uiþk1;jþk2

3 � ui;j3 þ k1
b
2

Xiþk1;jþk2
2 þ Xi;j

2

2
� k2a

Xiþk1;jþk2
1 þ Xi;j

1

2
ð7Þ

dk1;k21 ¼ Xiþk1;jþk2
1 � Xi;j

1 ð8Þ

dk1;k22 ¼ Xiþk1;jþk2
2 � Xi;j

2 ð9Þ

dk1;k23 ¼ Xiþk1;jþk2
3 � Xi;j

3 ð10Þ

Horizontal interfaces ðk1; k2 ¼ �1Þ:
Let eh be the thickness of the real horizontal joint; Sh ¼ b

2
t the area of the horizontal interface, Ih1 ¼ bt3

24
its

inertia with respect to the y1 axis and Ih3 ¼ b3t
96
its inertia with respect to the y3 axis. By denoting with ½½u�� the

jump of the displacement field at the Rk1;k2 interface, the following expression of the horizontal interface

elastic energy may be obtained:
W k1;k2 ¼ 1

2

Z
Rk1 ;k2

½½u��K½½u��

¼ 1K 00

2eh
Sh ðDk1;k2

1 Þ2
h�
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2eh
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�

ð11Þ
where K 0 ¼ 2lM þ kM and K 00 ¼ lM . The forces and the moments that the Biþk1;jþk2 block applies to the Bi;j

block (Fig. 2) are:
� oW k1;k2
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eh
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Fig. 2. Forces and moments at the horizontal interface.
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Vertical interfaces ðk1 ¼ �2; k2 ¼ 0Þ:
Let ev be the thickness of the real vertical joint; Sv ¼ at the area of the vertical interface, Iv2 ¼ at3

12
its

inertia with respect to the y2 axis and Iv3 ¼ a3t
12
its inertia with respect to the y3 axis. The following expression

of the vertical interface elastic energy may be obtained:
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2

Z
Rk1 ;k2

½½u��K½½u��

¼ 1K 00

2ev
Sv ðDk1;k2

2 Þ2
h�

þ ðDk1;k2
3 Þ2

i
þ ðIv2 þ Iv3Þðdk1;k21 Þ2

�
þ 1K 0

2ev
SvðDk1;k2

1 Þ2
�

þ Iv3ðdk1;k23 Þ2 þ Iv2ðdk1;k22 Þ2
�

ð18Þ
y1

y2

y3

F1 
+1,+1

F3 
+1,+1

M2 
+1,+1

M3 
+1,+1

M1 
+1,+1

F2 
+1,+1

Bi,j

Bi+2,j

Fig. 3. Forces and moments at the vertical interface.
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The forces and the moments that the Biþk1;jþk2 block applies to the Bi;j block (Fig. 3) are:
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¼ K 0

ev
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1 ð19Þ
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� oW k1;k2

oXi;j
2

¼ K 0

ev
Iv2d

k1;k2
2 � K 00

4ev
Svk1bD

k1;k2
3 ð23Þ

� oW k1;k2

oXi;j
3

¼ K 0

ev
Iv3d

k1;k2
3 þ K 00

4ev
Svk1bD

k1;k2
2 ð24Þ
The following notations are introduced: uip is the vector of in-plane degrees of freedom and uop is the

vector of out of plane degrees of freedom.
uip ¼ ðui;j1 ; u
i;j
2 ;X

i;j
3 Þ

T
; uop ¼ ðui;j3 ;X

i;j
1 ;X

i;j
2 Þ

T ð25Þ
At present, one can easily check that the in plane elastic actions Fip
elastic and the out of plane elastic actions

Fop
elastic are uncoupled, hence the two problems may be studied separately:
Fip
elastic ¼ � oW

ouip
¼ �Kipuip ð26Þ

Fop
elastic ¼ � oW

ouop
¼ �Kopuop ð27Þ
and,
Kipuip ¼ Fip
ext ð28Þ

Kopuop ¼ Fop
ext ð29Þ
Here W is the total elastic energy, Fip
ext is the vector of the applied in plane actions, Fop

ext is the vector of the

applied out of plane actions, Kip is the in plane stiffness matrix and Kop is the out of plane stiffness matrix.

Further details on the solution of Eqs. (28) and (29) are reported in Appendix A. The study below will be

restricted to out of plane actions.
uip ¼ 0; Fip
ext ¼ 0
3. The Reissner–Mindlin plate model

It is well-known that when the ratio of the thickness of a homogeneous plate over its overall size goes to

zero, then the 3D solution converges to the Love–Kirchhoff solution. Caillerie (1984) has extended this
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result to periodic plates. The method proposed below is an heuristic identification method which is not

based on the standard homogenisation methods because these methods do not lead to a Reissner–Mindlin

model. More precisely, on the basis of the theoretical homogenisation results of Caillerie (1984), it can be

shown that the 3D discrete model can be accurately approximated by a Love–Kirchhoff homogeneous plate
model, under the following three assumptions: (1) a, b and t are of the same order, (2) the considered

structure is large enough and (3) the applied actions are smooth enough.

The elastic constants DF
abcd which relate the plate bending tensor ðMabÞ to the curvature tensor

ðvabÞ ¼ ð�ULK
3;abÞ:
Mab ¼ DF
abcdvcd a; b; c; d ¼ 1; 2 ð30Þ
have been identified by Cecchi and Sab (2002b) as follows:
DF
1111 ¼

t3

12

4K 0 eh
a þ b

a K
00 ev

a

4 eh
a

ev
b

ð31Þ
DF
1122 ¼ 0 ð32Þ
DF
2222 ¼

t3

12

K 0

eh
a

ð33Þ
DF
1212 ¼

t
192

K 00 4eh

a ða2 þ t2Þ þ 4ev

b ðb2 þ t2Þ
� �

þ K 0 b
a

ev

a t
2

eh
a

ev
b

ð34Þ
Starting from Eq. (1), the 3D displacement field in the discrete model is
uðyÞ ¼
þXi;j

2 y3

�Xi;j
1 y3

ui;j3 þ Xi;j
1 ðy2 � yi;j2 Þ � Xi;j

2 ðy1 � yi;j1 Þ

0
BB@

1
CCA 8y 2 Bi;j ð35Þ
In the Love–Kirchhoff model, the 3D displacement field is expressed in terms of displacement ULK
3 ðy1; y2Þ

as follows:
uLKðyÞ ¼
�ULK

3;1 ðy1; y2Þy3
�ULK

3;2 ðy1; y2Þy3
ULK

3 ðy1; y2Þ

0
B@

1
CA 8y ð36Þ
An identification between the Love–Kirchhoff model and the 3D discrete model may be performed as
ui;j3 ¼ þULK
3 ðyi;jÞ ð37Þ
Xi;j
2 ¼ �ULK

3;1 ðyi;jÞ ð38Þ
Xi;j
1 ¼ þULK

3;2 ðyi;jÞ ð39Þ
A Reissner–Mindlin orthotropic plate model is proposed so as to take into account shear effects. It must
be noted that in this model, the 3D displacement field depends on displacement URM

3 ðy1; y2Þ and two

rotations /1ðy1; y2Þ and /2ðy1; y2Þ as follows:
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uRMðyÞ ¼
/1ðy1; y2Þy3
/2ðy1; y2Þy3
URM

3 ðy1; y2Þ

0
@

1
A 8y ð40Þ
Similarly to the previous procedure, an identification between the Reissner–Mindlin model and the 3D

discrete model may be defined as
ui;j3 ¼ þURM
3 ðyi;jÞ ð41Þ

Xi;j
2 ¼ þ/1ðyi;jÞ ð42Þ

Xi;j
1 ¼ �/2ðyi;jÞ ð43Þ
In the Reissner–Mindlin model, the curvature tensor is ðvabÞ ¼ ðð/b;a þ /a;bÞ=2Þ. The bending elastic

constants must be the same as those of the Love–Kirchhoff model (30)–(34) because these two models are
asymptotically equivalent when the ratio t=L goes to zero. In a Reissner–Mindlin orthotropic plate model,

the shear elastic constants ðFabÞ relate the shear stress vector ðQaÞ to the shear strain vector ðURM
3;a þ /aÞ as

follows:
Q1 ¼ F11ðURM
3;1 þ /1Þ; Q2 ¼ F22ðURM

3;2 þ /2Þ; F12 ¼ 0: ð44Þ
The identification of F22 may be obtained from (14). Indeed, the Q2 Reissner–Mindlin shear force
component may be identified with the normalised resultant force in direction 3 exerted by blocks Biþ1;jþ1

and Bi�1;jþ1 on the horizontal interfaces Rþ1;þ1 and R�1;þ1 of block Bi;j:
Q2 ¼
1

b

 
� oW þ1;þ1

oui;j3
� oW �1;þ1

oui;j3

!

¼ K 00

eh
t
2

uiþ1;jþ1
3

 
� ui;j3 þ b

2

Xiþ1;jþ1
2 þ Xi;j

2

2
� a

Xiþ1;jþ1
1 þ Xi;j

1

2

!

þ K 00

eh
t
2

ui�1;jþ1
3

 
� ui;j3 � b

2

Xi�1;jþ1
2 þ Xi;j

2

2
� a

Xi�1;jþ1
1 þ Xi;j

1

2

!
ð45Þ
Introducing (41)–(43) in (45) with Taylor expansions of order 1 in URM
3 and of order 0 in /1 and /2, (45)

becomes:
Q2 ¼
K 00at
eh

ðURM
3;2 þ /2Þ ð46Þ
Therefore, the elastic shear constant F22 ¼ K 00at
eh has been identified.

Similarly, the Reissner–Mindlin shear constant F11 may be found with (21). The Bi;j block is in contact

with the Biþ2;j block through the interface Rþ2;0. Hence the normalised shear force that Biþ2;j applies to Bi;j is
Q1 ¼ � 1

a
oW þ2;0

oui;j3
¼ K 00t

ev
uiþ2;j
3

 
� ui;j3 þ b

Xiþ2;j
2 þ Xi;j

2

2

!
ð47Þ
Introducing (41)–(43) in (47) with Taylor expansions of order 1 in URM
3 and of order 0 in /1 and /2, (47)

becomes:
Q1 ¼
K 00bt
ev

ðURM
3;1 þ /1Þ ð48Þ
Therefore, the elastic shear constant F11 ¼ K 00bt
ev has been identified.
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Remark. The 3D stress vector in the mortar can be computed in terms of the Reissner–Mindlin displace-

ment and rotations by using (2) and (41)–(43). In particular, if the mortar joints are modelled as Coulomb

interfaces, the limit of the assumption of purely elastic mortar can be established.
4. Numerical results: a comparison between the three models

In this section, a comparison between Love–Kirchhoff model, Reissner–Mindlin model and the 3D

discrete model is conducted on a test case. As explained in Section 2, in plane and out of plane actions are

uncoupled and only the case of out of plane actions is here studied.

A plate, simply supported on four edges, is subject to an uniform force distribution, p, in the orthogonal

direction to the middle plane (Fig. 4). For the 3D discrete model, this loading corresponds to an external

force, abp, applied in direction 3 to each brick�s center inside the plate, and to condition ui;j3 ¼ 0 applied to
each brick�s center of the boundary. The plate dimensions are: L, H and t (thickness). The balance equations
for plate models are:
Mab;b � Qa ¼ 0 ð49Þ
Qa;a � p ¼ 0 ð50Þ
The bending constitutive law is (30)–(34) with ðvabÞ ¼ ð�ULK
3;abÞ for the Love–Kirchhoff model and

ðvabÞ ¼ ðð/b;a þ /a;bÞ=2Þ for the Reissner–Mindlin model. The shear constitutive law is (46) and (48) for the

Reissner–Mindlin model.

The details of the analytical procedure to solve the problem are reported in Appendix B. The Navier

double series expansion and suitable boundary conditions are used to calculate the coefficients Smn that

characterise the solution of the form:
U3ðx1; x2Þ ¼
X1
m¼1

X1
n¼1

Smn sin
mpx1
L

sin
npx2
H

ð51Þ
It is clear that, when the number of heterogeneity is large enough, the homogenised plate models should

be consistent with the discrete 3D numerical model. More precisely, according to Caillerie (1984), the Love–

Kirchhoff model is consistent when block thickness and block in plane dimension are of the same order; all

these dimensions being small by comparison with the overall plate dimension. So three numerical experi-
mentations are carried out. The thickness being fixed, the first experimentation is performed aiming at
b=250mm

a=55mm

t=120mm

L=n*b

H=n*
a umax

Brick UNI

Fig. 4. Plate dimensions and boundary conditions.
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identifying the minimum number of blocks for which the hypothesis of masonry modelled as a homo-

geneous Love–Kirchhoff plate may be used. The second experimentation is performed so as to identify the

minimum number of blocks for which the hypothesis of masonry modelled as a homogeneous Reissner–

Mindlin plate may be used. The number of blocks being fixed, the third experimentation is performed so as
to identify the critical panel thickness for which the hypothesis of Love–Kirchhoff plate and Reissner–

Mindlin plate are acceptable.
4.1. Experimentation n.1

The case of a rectangular simply supported plate subject to a uniform distributed load orthogonal to the

middle surface of the plate has been proposed. A comparison between the displacement field obtained from

the homogenised Love–Kirchhoff plate model and the discrete numerical model has been carried out. The

analysed plate is composed of n blocks both in horizontal and vertical direction (Fig. 4). The blocks are

modelled as rigid bodies connected by elastic interfaces. The block dimensions are 250 mm (width), 55 mm

(height) and 120 mm (or 180 mm) (thickness). In this case the hypothesis f � e is relevant. The mortar joint

thickness is 2 mm, the Young modulus is EM ¼ 1000 MPa and Poisson ratio is mM ¼ 0:2.
In Fig. 4 the qualitative deformation of the middle line in horizontal direction is presented. The max-

imum error between the two models is referred to the maximum displacement umax in the centre of the plate.

The deformed configuration has been normalised with respect to the analytical value of umax. In Fig. 5, the

e% percent error in umax has been presented as a function of n. The e% is defined as follows:
e% ¼ 100
unumerical
max � uanalyticalmax

uanalyticalmax
Fig. 5 clearly shows that the error quickly decreases when the number of blocks in the panel increases. It

is clear that the error is negligible when the number of blocks in the panel is greater than n ¼ 21. This
Err
%

Heterogeneity number

Err%

Heterogeneity number

Zoom 

t=120mm

t=180mm

10 18 26 34 42 50
0

8

16

24

32

40

20 23 26 29 32 35
0

0.6

1.2

1.8

2.4

3

Fig. 5. Percentual error versus heterogeneity number between Love–Kirchhoff plate model and 3D discrete model.
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heterogeneity number can be assumed as a critical value to use the homogenised Love–Kirchhoff model. In

particular two trends of e% percent error are reported for two values of block thickness: 120 and 180 mm.

Moreover, it is interesting to note that the Love–Kirchhoff model is stiffer than the 3D discrete one. This

aspect is connected to the plate model hypothesis: middle surface of the plate indeformable and transverse
shear deformation neglected. Hence the e% percent error has a positive value.

4.2. Experimentation n.2

The same experimentation has been carried out when the continuum model to compare the 3D discrete

one is a homogenised Reissner–Mindlin plate. Hence, also in this experimentation, the parameter that

varies is the n number of blocks both in horizontal and vertical direction. In Fig. 6 the two cases of plate

thickness 120 and 180 mm are reported.

It is interesting to note the Mindlin–Reissner model is more consistent than the Love–Kirchhoff one also

in the case of number of blocks less than n ¼ 21. This aspect can be connected to the ratio between the L
overall dimension of the plate and the t thickness of the plate according to the plate theory. In fact when the
number of blocks in the plate is not relevant, the 2D reference model cannot be a thin plate model––Love–

Kirchhoff plate––, the thickness dimension is not small enough if compared to the overall in plane plate

dimension. Hence a thick plate model––Mindlinn-Reissner plate––is more consistent.

Moreover, in this second experimentation it is interesting to note that the Reissner–Mindlin model is

more deformable than the 3D discrete model. This aspect is connected to the shear elastic constants,––see

Section 3––, which have been imposed in addition to the flexural homogenised constants. Hence the e%
percent error has a negative value.

4.3. Experimentation n.3

For the same plate with fixed n––n ¼ 21 and n ¼ 25––, the two homogenised models are compared when

the t thickness of the block––that is also the thickness of the plate as a whole––varies from 120 to 600 mm.
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Fig. 6. Percentual error versus heterogeneity number between Reissner–Mindlin plate model and 3D discrete model.
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Hence, the ratio between the t thickness and the L dimension of the plate (see Fig. 4) varies from 0.023 to

0.114 for the plate with n ¼ 21, and from 0.019 to 0.096 for the plate with n¼ 25. The normalisation has

been realised versus the L dimension of the plate. The ratio between the two dimensions of the plate L
H is

4.54.
Starting from the thin plate Love–Kirchhoff hypothesis it is clear that the error significantly increases

when the thickness of the plate increases. In Fig. 7, for n ¼ 21 and n ¼ 25 the e% percent error is plotted.

Clearly there appears that the identification between a 3D body and a 2D body under the Love–Kirchhoff

hypothesis is very sensitive to the thickness of the plate, so the shear deformation cannot be neglected. A

comparison between the 3D discrete model and the Reissner–Mindlin plate model is carried out. Fig. 8

clearly shows that the Reissner–Mindlin model is very consistent also for the high thickness of the plate.

Fig. 9 shows a global comparison for the two plate models. For the sake of simplicity in this figure the

absolute values of the e% percent error is used.
5. Conclusions

In this work a comparison between a 3D numerical discrete model and two homogenised plate models

has been performed. The idea was both to verify the limit of application of the homogenised models and to

set the parameters present in these models by comparison with the discrete model. The perspective of

development of the discrete model is a study both in a non-linear field––i.e. mortar modelled as no tension
material––and in a dynamic field.

The more consistent contribution of this work is in the formulation of the Reissner–Mindlin model. The

bending constants are the same as those of the Love–Kirchhoff model, hence obtained from a homoge-

nisation field problem. On the other hand, the shear constants has been obtained through an identification

on the shear forces in the discrete model and the Reissner–Mindlin one. As shown in the three numerical

experimentations, by comparison with the Love–Kirchhoff model, the Reissner–Mindlin plate model fits in

a more consistent manner the results of the discrete model.
Appendix A. Numerical procedure

Although standard methods exist to solve numerically (28) and (29), a Molecular Dynamics method

(Allen and Tildesley, 1994; Owen and Hinton, 1980) has been developped in the perspective of linear and

non-linear analysis with dynamic loading. In this case, the equation to be solved is
u ¼ ðui;jk ;X
i;j
k Þ

T
; k ¼ 1; 3 ðA:1Þ

M
o2u

ot2
þK u

�
þ l

ou

ot

�
¼ Fext ðA:2Þ
where l is a damping coefficient, Fext are the applied actions, M is the (diagonal) mass matrix and K the

stiffness matrix.

To solve the dynamic Eq. (A.2) the predictor–corrector algorithm GEAR of order 2 is used. Let uðtÞ,
vðtÞ and aðtÞ denote the displacement, the velocity and the acceleration at time t. Using a Taylor expansion

the correspondent predictor vectors at time t þ dt are:
upðt þ dtÞ ¼ uðtÞ þ dt � vðtÞ þ 1

2
dt2 � aðtÞ þ oðdt3Þ ðA:3Þ
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vpðt þ dtÞ ¼ vðtÞ þ dt � aðtÞ þ oðdt2Þ ðA:4Þ

apðt þ dtÞ ¼ aðtÞ þ oðdtÞ ðA:5Þ

Using the balance equation, the real accelerations may be found:
a ¼ M�1ðFext �Kðup þ lvpÞÞ ðA:6Þ

and the error in the predictor time step may be calculated:
daðt þ dtÞ ¼ a� apðt þ dtÞ ðA:7Þ

Finally, the corrector time step is introduced:
uðt þ dtÞ ¼ upðt þ dtÞ þ 1

4
dt2 � da � c0 ðA:8Þ

vðt þ dtÞ ¼ vpðt þ dtÞ þ 1

2
dt � da � c1 ðA:9Þ

aðt þ dtÞ ¼ apðt þ dtÞ þ da � c2 ðA:10Þ

where c0 ¼ 0, c1 ¼ 1 and c2 ¼ 1. In the special case of static equilibrium (Fig. 10) the time step integration is

stopped when:
enum ¼ kKup � Fextk < toler ðA:11Þ

In the above formula, the force balance equations are normalised by a typical applied force (for instance,

pab in the case considered in Section 4) and the moment balance equations are normalised by a typical

applied moment (for instance, pab2 in the case considered in Section 4). In this case, the used norm is the

maximum absolute value and the tolerance is 0.005. In other words, the maximum error in the force balance

equations is less than 0.005pab and the maximum error in the moment balance equations is less than

0.005pab2.
The dt time step must be much smaller than a critical value Tc calculated as a function of mass and

stiffness properties of the block. So
dt ¼ Tc
100

Tc ¼
ffiffiffiffi
m
kn

r
kn ¼

ShK 0

ev
m ¼ qabt l ¼

ffiffiffiffiffiffiffiffiffiffiffi
m � kn

p
ðA:12Þ
where q is the density of the block.

The developed software is written in Fortran. The program formulation starts from geometrical

description of a generic masonry wall. Each block is identified with its centre position. As shown in Fig. 11

a wall with k-block courses has been investigated: odd courses present n-blocks, while even courses present

n+1 blocks––hence the length between both two even courses and two odd courses is 2nþ 1––. Moreover in

the even courses the first and the last blocks are half-blocks. This is due to the running bond texture of
masonry.
Fig. 10. Final equilibrated configuration.
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Fig. 11. Geometrical description of a generic masonry wall.
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The following steps are proposed:

• definition of geometrical and mechanical quantities;

• construction of mass tensor for the generic i-block;
• imposition of the boundary condition on forces––applied loads––and on displacement––constraint de-

grees of freedom––;

• step 0: the initial displacements, velocities and accelerations are set to zero;

• step i: computation of the predicted displacements, velocities and accelerations (A.3)–(A.5);

• evaluation of elastic and damping forces and moments at the interfaces according to Section 2 proce-

dure;

• if the static equilibrium according to Eq. (A.11) is satisfied, then stop;

• evaluation of real acceleration at the i-step according to Eq. (A.6);
• evaluation of the corrected displacements, velocities and accelerations (A.8)–(A.10);

• go to step iþ 1.

In this analysis, when the plate is about to the configuration of static equilibrium, the kinetic energy may

be still consistent. The plate fluctuates around this configuration. In order to quicken the convergence, the

evaluation of the kinetic energy has been performed at each step. If at the iþ 1 time step the kinetic energy

is smaller than the kinetic energy at the i step, then the velocity vector is set to zero.

Appendix B. Analytical formulation of simply supported orthotropic plate

1. Love–Kirchhoff plate

The equations to be solved are (30) and (49) and (50) with ðvabÞ ¼ ð�U3;abÞ. Therefore, the differential

equation of the plate is
DF
1111U3;1111 þ 2ðDF

1122 þ 2DF
1212ÞU3;1122 þ DF

2222U3;2222 ¼ pðx1; x2Þ ðB:1Þ
The boundary conditions of a simply supported plate on the four edges are:
U3 ¼ 0; U3;11 þ m21U3;22 ¼ 0 for x1 ¼ 0; x1 ¼ L
U3 ¼ 0; U3;22 þ m12U3;11 ¼ 0 for x2 ¼ 0; x2 ¼ H

�
ðB:2Þ
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where m21 ¼
DF
1122

DF
1111

¼ 0 and m12 ¼
DF
1122

DF
2222

¼ 0. The boundary conditions will be satisfied by any of the terms of
U3ðx1; x2Þ ¼
X1
m¼1

X1
n¼1

Smn sin
mpx1
L

sin
npx2
H

ðB:3Þ
where Smn are unknown coefficients, m and n are integers. The load is as follows:
pðx1; x2Þ ¼
X1
m¼1

X1
n¼1

pmn sin
mpx1
L

sin
npx2
H

ðB:4Þ
so, the pmn coefficients are:
pmn ¼
4

LH

Z L

0

Z H

0

pðx1; x2Þ sin
mpx1
L

sin
npx2
H

dx1 dx2 ðB:5Þ
and by substituting (B.3) in the differential Eq. (B.1),
Smn ¼
pmn
Dp4

ðB:6Þ
with
D ¼ DF
1111

m
L

� �4
þ 2ðDF

1122 þ 2DF
1212Þ

mn
HL

� �2
þ DF

2222

n
H

� �4
ðB:7Þ
If the load is uniform pðx1; x2Þ ¼ p, then
pmn ¼
4p

mnp2
ð1� cosmpÞð1� cos npÞ ðB:8Þ
2. Reissner–Mindlin plate

The equations to be solved are (30), (46) and (48)–(50) with ðvabÞ ¼ ðð/b;a þ /a;bÞ=2Þ for the Reissner–

Mindlin model. Substituting the Eqs. (30), (46), (48) in (49), (50), one obtains
DF
1111/1;11 þ DF

1212/1;22 þ ðDF
1122 þ DF

1212Þ/2;12 � F11ð/1 þ U3;1Þ ¼ 0 ðB:9Þ

ðDF
1122 þ DF

1212Þ/1;12 þ DF
1212/2;11 þ DF

2222/2;22 � F22ð/2 þ U3;2Þ ¼ 0 ðB:10Þ

F11ð/1;1 þ U3;11Þ þ F22ð/2;2 þ U3;22Þ � pðx1; x2Þ ¼ 0 ðB:11Þ
In the case of simply supported plate, the boundary conditions are:
U3 ¼ 0; /2 ¼ 0; /1;1 ¼ 0 for x1 ¼ 0; x1 ¼ L
U3 ¼ 0; /1 ¼ 0; /2;2 ¼ 0 for x2 ¼ 0; x2 ¼ H

�
ðB:12Þ
The functions that satisfy the balance equation and the boundary conditions are (Dobyns, 1981):
U3ðx1; x2Þ ¼
X1
m¼1

X1
n¼1

Smn sin
mpx1
L

sin
npx2
H

ðB:13Þ

/1ðx1; x2Þ ¼
X1
m¼1

X1
n¼1

Amn cos
mpx1
L

sin
npx2
H

ðB:14Þ

/2ðx1; x2Þ ¼
X1
m¼1

X1
n¼1

Bmn sin
mpx1
L

cos
npx2
H

ðB:15Þ
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pðx1; x2Þ ¼
X1
m¼1

X1
n¼1

pmn sin
mpx1
L

sin
npx2
H

ðB:16Þ
Substituting these functions in the differential equations:
g11 g12 g13
g12 g22 g23
g13 g23 g33

0
@

1
A Amn

Bmn

Smn

0
@

1
A ¼

0

0
pmn

0
@

1
A ðB:17Þ
where
g11 ¼ DF
1111

mp
L

� �2
þ DF

1212

np
H

� �2
þ F11

g12 ¼ ðDF
1122 þ DF

1212Þ
mp
L

np
H

g13 ¼ F11
mp
L

g22 ¼ DF
1212

mp
L

� �2
þ DF

2222

np
H

� �2
þ F22

g23 ¼ F22
np
H

g33 ¼ F11
mp
L

� �2
þ F22

np
H

� �2

solving the system, one obtains
Amn ¼
ðg12g23 � g22g13Þpmn

detðgijÞ
ðB:18Þ

Bmn ¼
ðg12g13 � g11g23Þpmn

detðgijÞ
ðB:19Þ

Smn ¼
ðg11g22 � g212Þpmn

detðgijÞ
ðB:20Þ
where detðgijÞ is the determinant of gij. Hence it is possible to evaluate the u3ðx1; x2Þ displacement field and

the /aðx1; x2Þ rotations in the plate.
References

Alpa, G., Monetto, I., 1994. Microstructural model for dry block masonry walls with in-plane loading. J. Mech. Phys. Solids 47 (7),

1159–1175.

Allen, M.P., Tildesley, D.J., 1994. Computer Simulations of Liquids. Oxford Science Publications.

Anthoine, A., 1995. Derivation of in plane elastic characteristic of masonry through homogenization theory. Int. J. Solid Struct. 32,

137–163.

Anthoine, A., Pegon, P., 1994. Numerical strategies for solving continuum damage problems involving softening: application to the

homogenization of masonry. In: Proceedings of the Second International Conference on Computational Structures Technology,

Atene.



2276 A. Cecchi, K. Sab / International Journal of Solids and Structures 41 (2004) 2259–2276
Avila-Pozos, O., Klarbring, A., Movchan, A.B., 1999. Asymptotic model of orthotropic highly inhomogeneous layered structure.

Mech. Mater. 31, 101–115.

Caillerie, D., 1984. Thin elastic and periodic plates. Math. Meth. Appl. Sci. 6, 159–191.

Cecchi, A., Rizzi, N.L., 2001. Heterogeneous material. A mixed homogenization rigidification technique. Int. J. Solids Struct. 38 (1),

29–36.

Cecchi, A., Sab, K., 2002a. A multi-parameter homogenization study for modelling elastic masonry. Eur. J. Mech. A.-Solids 21, 249–

268.

Cecchi, A., Sab, K., 2002b. Out of plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A.-Solids 21,

715–746.

de Felice, G., 1995. D�etermination des coefficients d��elasticit�e de la mac�onnerie par une m�ethode d�homog�en�eisation. Actes du 12�eme

Congr�es Franc�ais de M�ecanique, vol. 1, Strasbourg, pp. 393–396.

Dobyns, A.L., 1981. The analysis of simply supported orthotropic plates subject to static and dynamic loads. Am. Inst. Aeronaut.

Astronaut. J. (May), 642–650.

Klarbring, A., 1991. Derivation of model of adhesively bounded joints by the asymptotic expansion method. Int. J. Eng. Sci. 29, 493–

512.

Lee, S.J., Pande, G.N., Middleton, J., Kralj, B., 1996. Numerical modelling of brick masonry panels subject to lateral loading.

Comput. Struct. 31 (211), 473–479.

Lee, S.J., Pande, G.N., Kralj, B., 1998. A Comparative Study on the Approximate Analysis of Masonry Structures. Mater. Struct.

61 (4), 735–745.

Lofti, H.R., Benson Shing, P., 1994. Interface model applied to fracture of masonry structures. J. Struct. Eng. ASCE 120, 63–80.

Lopez, J., Oller, S., Onate, E., Lubliner, J., 1999. A homogeneous constitutive model for masonry. Int. J. Numer. Meth. Eng. 46, 1651–

1671.

Lourenc�o, P.B., Rots, J. G., 1993. Discrete models for jointed block masonry walls. In: Proceedings of the Sixth North American

Masonry Conference, Philadelphia, pp. 939–949.

Luciano, R., Sacco, E., 1997. Homogenization technique and damage model for old masonry material. Int. J. Solids Struct. 34 (24),

3191–3208.

Markov, K.Z., 1999. Elementary micromechanics of heterogeneous solids. In: Markov, K.Z., Preziosi, L. (Eds.), Heterogeneous Media

Micromechanics Modeling Methods and Simulations. Birkhauser, Boston, pp. 1–162.

Masiani, R., Rizzi, N.L., Trovalusci, P., 1995. Masonry walls as structured continua. Meccanica 30, 673–683.

Owen, D.R.J., Hinton, E., 1980. Finite Elements in Plasticity: Theory and Practice. Pineridge Press Limited, Swansea U.K.

Salerno, G., de Felice G.,1999. Continuum modelling of periodic brickwork. Report no. 206 LABMEC. Dip. di Strutture, Univ.

Calabria.

Salerno, G., de Felice, G., 2000. Continuum modelling of discrete systems: a variational approach. In: Proceedings of the ECCOMAS,

Barcelona, pp. 11–14.

Sanchez-Palencia, E., 1980. Non Homogeneous Media and Vibration Theory. Springer, Berlin.

Sanchez-Palencia, E., Zaoui, A. (Eds.), 1987. Homogenization Techniques for Composite Media, Lectures Notes, vol. 272. Springer,

Berlin.

Sanchez-Hubert, J., Sanchez-Palencia, E., 1992. Introduction aux m�ethodes asymptotiques et a l�homog�en�eisation. Masson, Paris.


	A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork
	Introduction
	The 3D discrete model
	The Reissner-Mindlin plate model
	Numerical results: a comparison between the three models
	Experimentation n.1
	Experimentation n.2
	Experimentation n.3

	Conclusions
	Numerical procedure
	Analytical formulation of simply supported orthotropic plate
	References


